
In first week of December 2015

- When whole of the Chennai city had no power for 75 hours
 - Even 1 MW solar plant at IITM failed to provide any power
 - There was one home at IITM which continued to have lights and fans and cell-phone / lap-top charger
 - 125W solar panel + 0.5 kWh of battery
 - Two tube-lights, a bulb and a fan + laptop and cell-phone charged some 15 times
 - Fails to add up
 - Solar DC Inverterless
 - Full DC wiring, all Loads DC, solar and battery connected on DC line, input grid power converted to DC

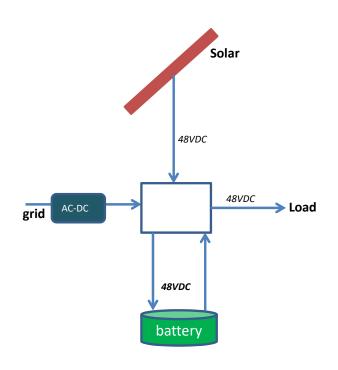
But AC Power won 125 years ago!

- In an AC Vs DC power-line debate between Tesla (for AC) and Thomas Edison (for DC) in 1880's
 - AC won decisively due to transformer's ability to step-up and step-down voltages easily
 - And reduce line losses
- AC dominated ever-since
 - Transmission lines became all AC
 - Homes and offices were wired on AC line (230V AC in India)
 - All appliances became AC
 - All R&D focused on AC: R&D on DC virtually stopped
- So why are we talking about DC today?

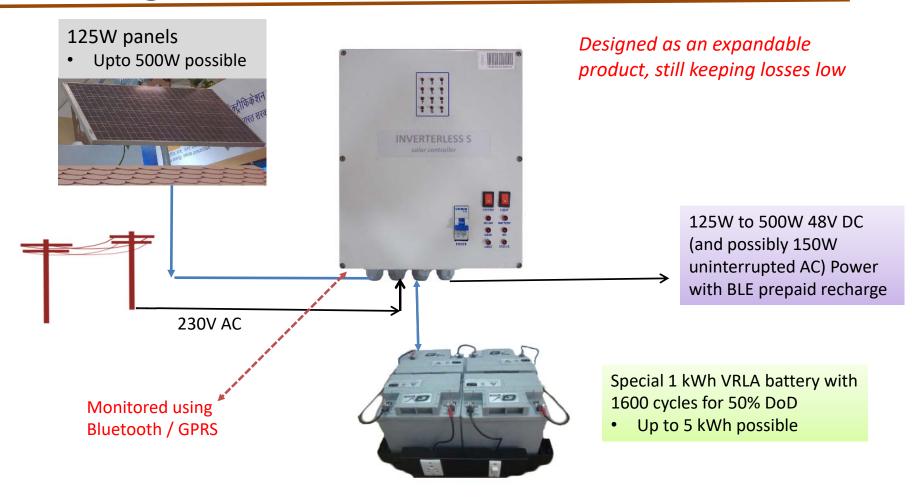
Decentralised Solar Power at Homes

- Solar PV gives DC Power
 - But load is AC
 - Needs a DC-AC converter
- Now if we add a battery
 - Battery stores only DC
 - Require an AC-DC converter for charging
 - Require a DC-AC converter during discharging
- For *low power (say 100W)*, each converter can have 10 to 15% loss
 - Solar with battery may have up to 45% loss+ battery loss

And it gets Worse


As one realises that home-loads have been slowly moving towards DC

Fans	AC fan	BLDC fan		
At full Speed	72W 30W			
At speed 1	60W	9W		
Lighting	CFL Tube light	LED tube		
At Max. Intensity	36W	15W		
At Lowest Intensity	NA	4W		


- All Electronics devices work on low-voltage DC
 - TV (LED/LCD), laptops. Cell-phones, speaker-phones, tablets, speakers
 - AC to DC conversion has losses from 20% to 50% in each device
- Even the refrigerators, air-conditioners, washing machines are now using BLDC or SR motors
- DC-powered DC-appliances are energy-efficient
 - Consumption down by 50%

Are we ready to take a leap and move to Solar-DC

- DC Micro-grid connecting
 - Solar Panel
 - Battery
 - DC Appliances
- Highly efficient usage of Power
 - Low-power from grid alone converted from AC-DC
- 48V DC chosen due to
 - Safety considerations
 - Lower cable losses compared to 12V/24V DC systems
- But design non-trivial
 - Solar MPPT voltage varies
 - Battery needs independent charge voltage
 - Load is at some fixed voltage
 - DC-DC converters will add similar losses

DC Microgrid for home: Solar-DC Inverterless

And worked with start-ups to build Appliances

LED Bulb

• 5W instead of 30W bulb

Cell phone Charger/Socket

DC charger with USB port

BLDC Fan

- 30W instead of 72W AC fan
- 9W at lowest speed

LED Tube light

 15W - dimmable to 4W, instead of 36W fluorescent tube

Remote Control for Fan & Tube light

ON/OFF and for dimming

Cost: ₹20000 for 125W SP + 1 kWh Battery+ appliances

Energy-efficient DC appliances being expanded

DC Desert Cooler

 Consumes 120W instead of 180W AC cooler

DC Mixers

 Consumes 150W, whereas AC Mixers consume 350W

DC-powered Colour TV

 Consumes 30W along with set-top box Butter-churner and atta-chakki, sewing machines, roti-machines

getting ready

Refrigerator, charkha and Stove

Still experimental

Solar-DC deployment in 15000 homes

- Electrified 4000 off-grid homes in Jodhpur and Jaisalmer districts of Rajasthan
 - Tough terrain, no road connectivity,
 sandstorms, lack of local resources
- 7500 homes in Assam being taken up in hills
 - 12000 more homes being take up

Other 48V DC deployments

- 12000 DC homes in Bihar through grid
- 10000 homes in Assam through grid
- Grid-connected solar-DC installations in states of Orissa, Karnataka, Tamil Nadu, Telangana, Andhra, where power cuts exceed 8 hours /day
 - 215 homes in Belagavadi, Karnataka
 - 380 homes in Devarakonda, Telangana
 - 27 installations in Trichy, Tamil Nadu
- Solar-DC off-grid deployments
 - 87 homes and a school in Trimal, Odisha
 - 20 homes in Kundithal, Nilgiri Forests, Tamil Nadu
 - 30 installations in Irukkam Islands, Andhra Pradesh
 - 28 installations in Sudhuktha thanda, Vikarabad, Telanga

Polytechnic students learning how to deploy

June 2017

Scaled adption of DC Power line in India

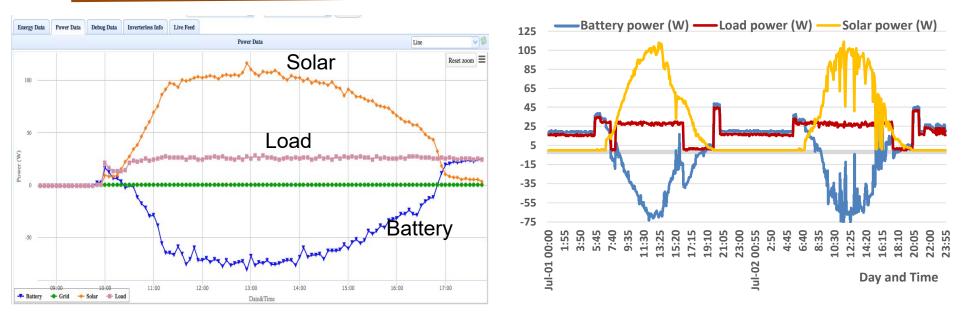
Changing lives in deserts

Villagers thrilled

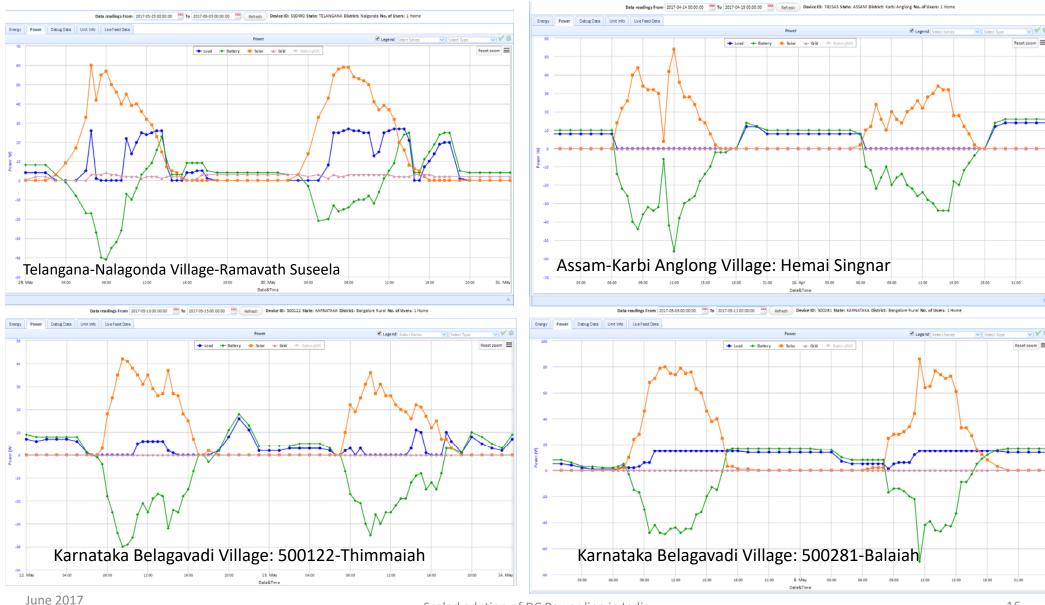
 "Apne Vidyarthiyon ko ghar ka kaam dene laga hu. Khush hu ki is baar garmiyon mein bhi bachhe mann laga kar padhai karenge." [now I give my students home-work. Happy that even in summer they will now be able to study]

- Masterji

 "Sab ko utshah se apne ghar ka Solar system dikhata hu ji, hamare ghar mein bhi pankha, light aur remote hai" [show my solar system to everyone at home. Have fan, light and remote]


- Dunga Ram

feedback: https://youtu.be/NF6EgdRsBXk



Monitoring to ensure health

Measurements from a home in Bhom Ji ka Gaon, Jodhpur from 9am to 5pm

- Understanding use of solar Power and losses
- Is customer using more than what solar provides? Is she using less? Is power being wasted?
- Grid-power usage to be minimised

But what can one do with 100 Watts?

- 100 Watts DC: Can support 3 lights + 2 fans + cell-phone charging
 - Or 3 lights + 1 fan + TV (24" LED/LCD) + cell-phone charging
- Equally important for grid-connected homes: huge cost savings
 - Draws less from grid: reduces power-bill
 - Provides back-up power: frees homes from load-shedding, grid-fault
 - Enables decentralised roof-top solar to become affordable
- 500W solar power (50 sqft) with DC appliances can take care of most essential loads in middle class homes
 - Except washing machines, air-conditioners
- 240M homes with 500W solar panel produces close to total domestic consumption in India in a year
 - 240Mx0.5 kWx1550 solar hrs/year = 190,000 GWh /year

Small AC / DC Home Power Costs

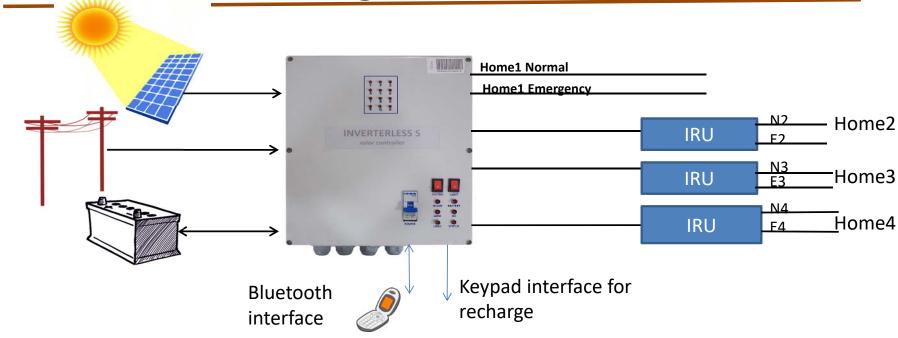
Device	Numbers deployed	Operation hrs/day	Cost / day includes depreciation an interest for solar panel and battery					
Tubelights	2	6		assuming grid costs of ₹5 per unit				
Fans	2	12						
Bulbs	2	10		AC Home		DC Home		
Phones	1	4		AC III	Offic	DCT	Offic	
TV	1	10	Energ	gy/	Cost per	Energy /	Cost per	
			day k	Wh	day ₹	day kWh	day ₹	
AC Grid + 0 LS		3.2	27	16.3	1.29	6.45		
AC +Battery + Solar + 4h LS		.S 3.	75	28.9	1.35	7.3		
off-g	off-grid + Battery + Solar		4.	9	50.6	1.33	12.6	

Off-grid home power-costs with solar-DC (₹12.6 per day) less than the cost of on-grid AC homes with no power-cuts (₹16.3 per day)

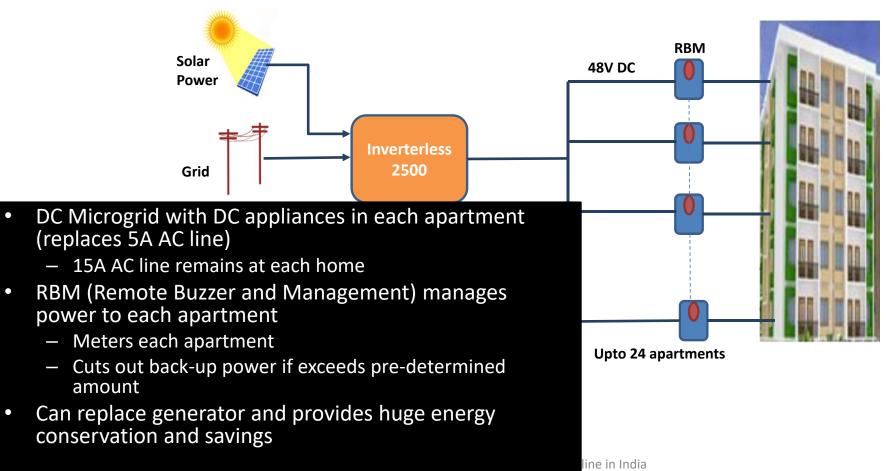
Solar-DC: Equally important for grid-connected homes

- Solar-DC Inverterless + DC power line + DC appliances: huge cost savings
 - Draws less from grid: reduces power-bill
- Provides back-up power: frees homes from load-shedding, grid-fault

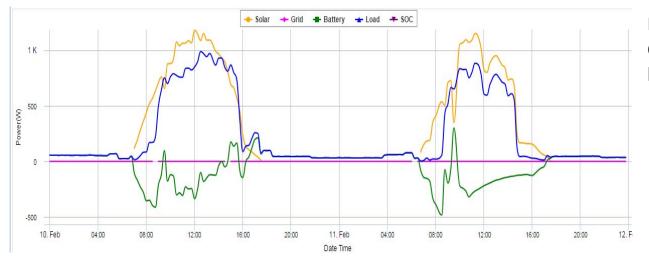
500W solar power (50 sqft) with DC appliances can take care of most


essential loads in middle class homes

- Except washing machines, air-conditioners
- 240M homes with 500W solar panel produces close to total domestic consumption in India in a year
 - 240Mx0.5 kWx1550 solar hrs/year = 190,000 GWh /year

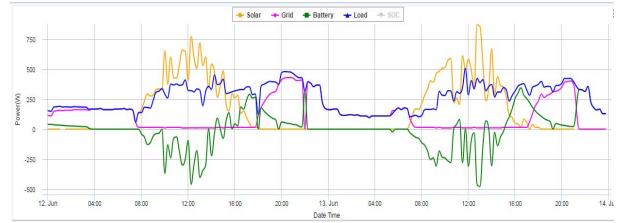

MULTI-HOME DC MICROGRIDS

Solar-DC micro-grid for 4 home cluster



- Enables sharing of Solar and Battery Resources amongst multiple homes
 - Taking advantage of non-concurrent and unequal usages
 - each home metered and cut-off

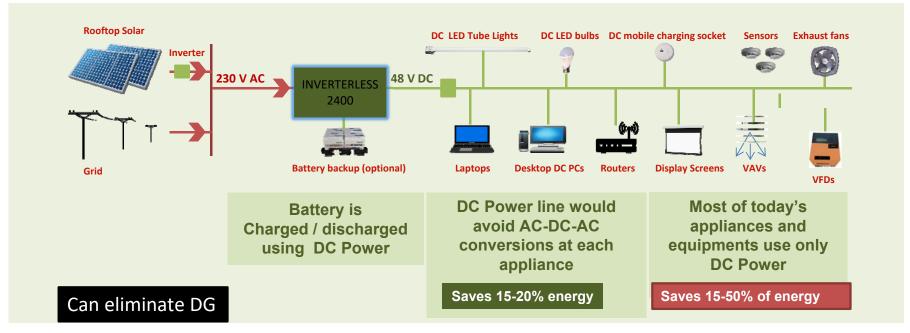
Solar-DC micro-grid for 12/24 Home Apartment Complex



22

DC Micro-grid at Govt Girls School, Chennai, solar 1.5kWp, Battery 10 kWh, Feb 2017

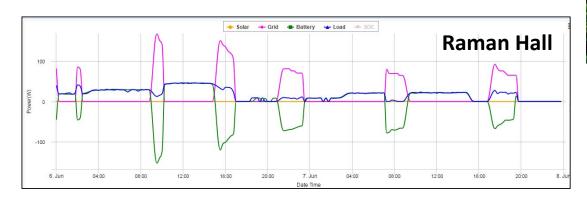
DC Micro-grid at Police Station, Seliyur, 1.25 kWp solar, 5kWh battery, June 2017



DC Power-line can play equally important role

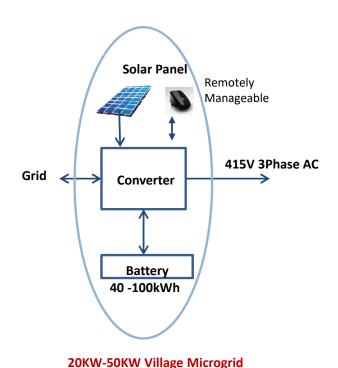
- In Offices, Commercial Complexes, high-rise buildings, hospitals and educational institutes
 - In driving decentralised solar to power them
 - Most loads have anyway become DC
- Not just in powering Appliances
 - But also in air-conditioning, cooling systems, lifts and pumps

Similarly DC-Powered Smart Buildings



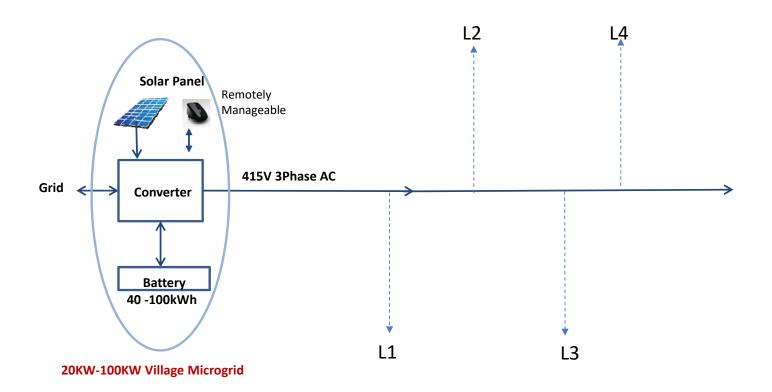
APPLICATIONS:

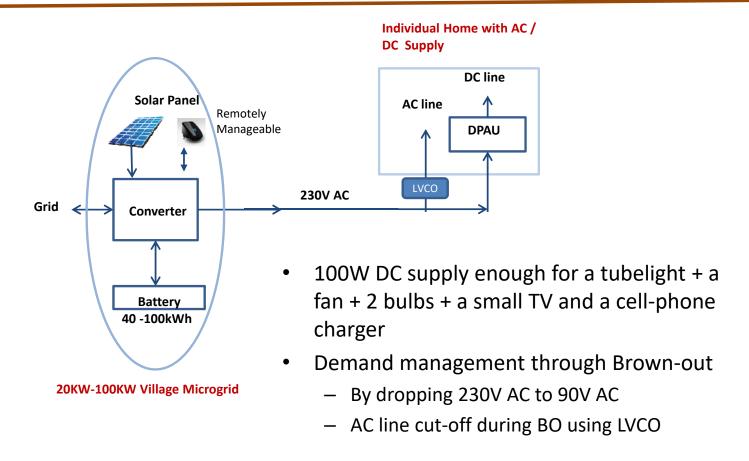
DC Micro-grid in IITMRP



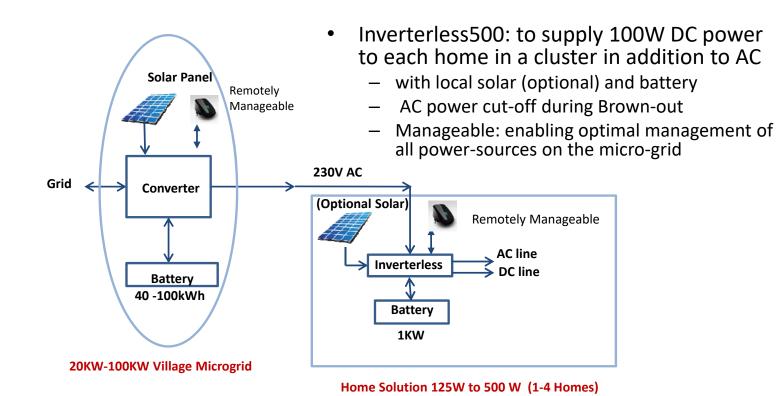
800K sq ft building with DC wiring throughout

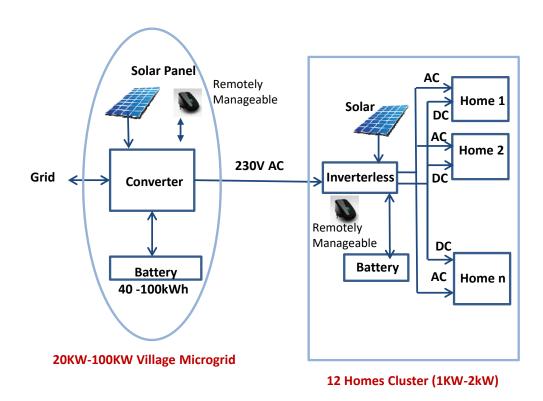
VILLAGE MICRO-GRIDS


Village Solar Micro-grid

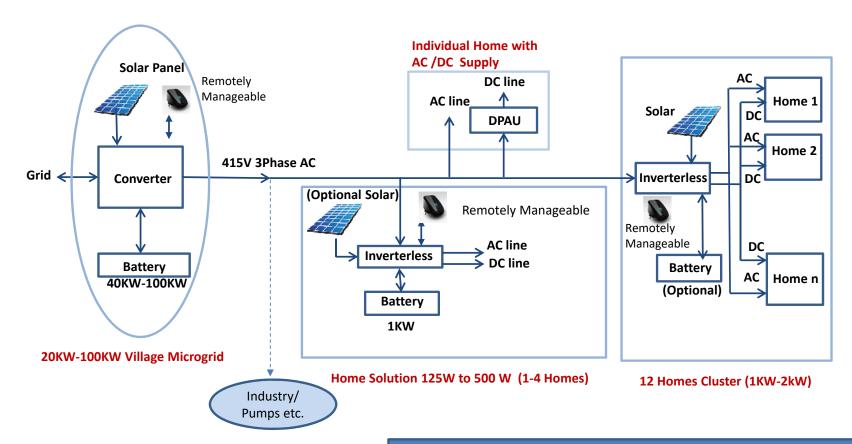

 A village power plant with 20 to 50 kW(p) solar panel

- With storage of 40 to 100 kWh
- Three phase AC input grid (output of a distribution transformer)
 - With two-way power-exchange
- Three phase AC output to power village loads
 - Would switch to 380V DC when mature
- Remotely Manageable


Driving 4 kinds of Loads


L1: Homes with AC / DC (100W) Supply

L2: Homes with AC / DC (100W) Supply


L3: 12 / 24 home-cluster

- Inverterless 2500: to supply 100 to 200W DC power to each home in a cluster in addition to AC
 - with solar and battery
 - AC power cut-off during Brown-out
 - Metering and power-control for each home
 - Manageable: enabling optimal management of all power-sources on the micro-grid
- Highly cost-effective

Joint project with ABB in Jharkhand, India

Village Micro-Grid: L4 is industry and pumps with LVCO

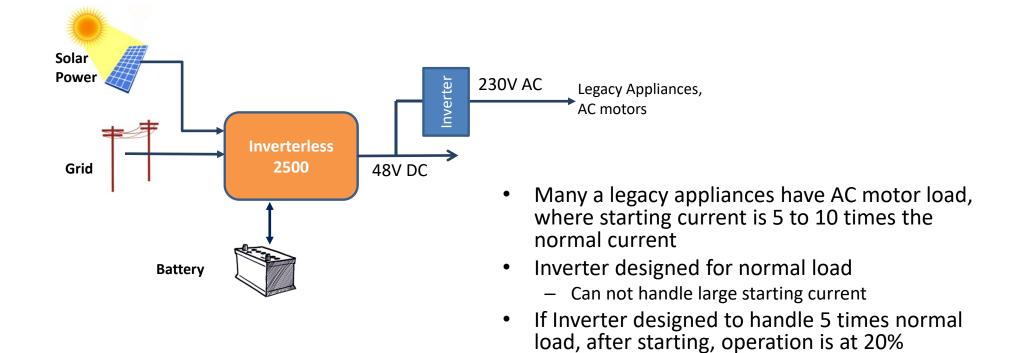
Tomorrow 3 phase AC in grid may be replaced by 380V DC

Can Solar-DC drive Rural Industry?

- Lack of quality power a big bottleneck for rural industry
- Electricity in most industry is motor-centric
 - Use of Brushless DC (BLDC) Motors or better still Switched Reluctance
 (SR) Motors could reduce power requirement by 30 to 40%
 - SR motors in volume not expensive
 - Can be driven by solar power / grid / stored power
 - Can make the whole system become affordable

Solar Water Pumps

- Agricultural-water can be pumped throughout the day
 - When sun is available
 - At low power early in morning, peaking at noon and again falling off
 - Solar-DC powered VFD driving Induction motor pumps ideal
 - Or solar-driven BLDC or SR motor pumps
 - Water may be stored in a sump and used when needed
- Key is to have low-cost and easily maintainable in rural areas
 - Pump Sizing: pump only required water in a full sunny day

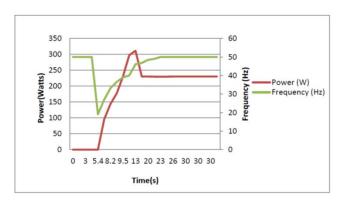


All kinds of Legacy Appliances, Equipment and Machines in large numbers

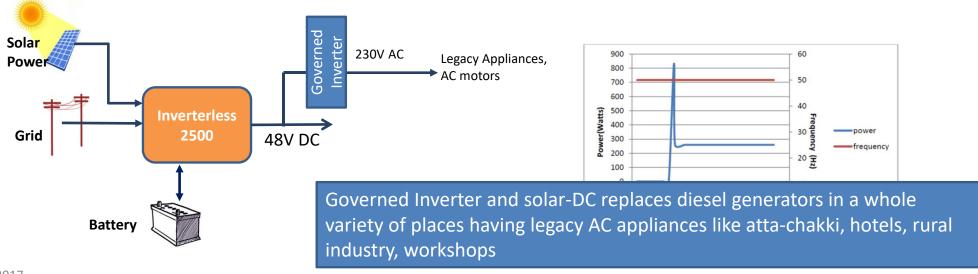
BUT NOT ALWAYS POSSIBLE TO CONVERT ALL LOADS

TO DC (even though substantial DC loads can be used)

Why not simply add an Inverter (DC to AC)



capacity


Poor effciency

Answer is Governed Inverter

- If current output of a Inverter exceeds maximum specified
 - reduce output frequency
 - For an AC motor, power reduces as cube of frequency
- Once motor starts, frequency goes back to normal

With Governed Converter the starting power requirement is limited to 311W.

Scaling needs Standardisation

- Bureau of Indian Standards has standardised 48V DC for home and office use
 - Has presented 48V DC as standards for in IEC
- A precursor to larger eco-system of DC-powered DC appliances
- Need
 - standardisation for 380V DC for higher power loads
 - inexpensive 380V to 48V as well as 48V to 380V DC-DC converters

To Conclude

- DC Microgrids and DC appliances scaling in India because
 - Makes economic sense
 - By enabling off-grid low income homes to have electricity
 - 50M homes not connected to grid; 50M homes have power for less than 15 hrs / day
 - take power 24 x7 and more affordable to middle-income homes
 - Bring in higher efficiencies
 - Integrates well with roof-top solar and storage
- Communication interfaces in these new DC microgrids enable grid to use distributed storages
 - Thereby promoting growth of renewables