## Limited subsidy and Low-affordability imperatives for EVs in India Can we still scale quickly?

Ashok Jhunjhunwala, IIT Madras (on sabbatical), Principal Advisor (Minister of Railways), <u>ashok@tenet.res.in</u> with Prabhjot Kaur, IITM

#### The talk around a year back

- EV will not happen in India soon; will take the hybrid route; requires 30 to 40% subsidy (as in rest of the world); Charging infrastructure not ready

   Industry was largely disinterested
- Today: some 50 Indian companies going hammer and tongs on EV, believing that India will charter its own path
  - Vehicles: Ashok Leyland, Tata Motors, Mahindra, Eicher, Bajaj, Kinetic, Lohia, Electrotherm, Goenka, Hero-Eco, Okinawa, Ather, Avon Cycles, TVS Motors
  - Li Ion Battery and recycling: Exide, Amar Raja, Exicom, ACME, Grintech, Greenfuel, Ion Batteries, Attero, Sun-mobility
  - Energy Operators: Essel Infra, Sun-mobility, BPCL, NTPC, PGCIL, Kerala DISCOM
  - Chargers & Motors: Delta, ACME, Exicom, TVS Motors, Consulneowatt, Valeo Compageautomation
  - Most State Governments, STUs

## How did this happen?

- Recognition that EV is the future
  - Four times higher energy efficiency and far higher reliability (50 times less moving parts)
  - will threaten India's GDP (auto-sector 7.1% + 5% transport fuel processing and distribution) and large number of jobs
- Recognition: India has low affordability
  - 30 to 40% subsidy on Electric Vehicles in USA, Europe and China: but subsidies in India will be limited (or none at all)
  - EV must make business sense even with this!
- How do we make business sense? Battery contributes to 50% of costs
  - Falling rapidly over last five years
    - Battery-pack with low-cost NMC-Graphite cells under \$200 per kWh today
    - but still expensive for the desired range

| Year | Li battery costs<br>per kWh |   |
|------|-----------------------------|---|
| 2012 | USD 600                     |   |
| 2015 | USD 450                     |   |
| 2017 | USD 250                     |   |
| 2020 | USD 150                     |   |
| 2024 | < USD 100                   | ♥ |

Copying the EV program of USA, China, Europe will take us nowhere

# Can India Drive its EV program Innovatively and Differently?

### India's Vehicles dominated by two-wheelers

| Category               | 2011-12 | 2012-13 | 2013-14 | 2014-15 | 2015-16 | 2016-17 |
|------------------------|---------|---------|---------|---------|---------|---------|
| Passenger Vehicles     | 2.63    | 2.67    | 2.5     | 2.6     | 2.79    | 3.05    |
| Commercial<br>Vehicles | 0.81    | 0.79    | 0.63    | 0.61    | 0.69    | 0.71    |
| Three Wheelers         | 0.51    | 0.54    | 0.48    | 0.53    | 0.54    | 0.51    |
| Two Wheelers           | 13.4    | 13.9    | 14.8    | 15.9    | 16.5    | 17.6    |
| Grand Total            | 17.4    | 17.8    | 18.4    | 19.7    | 20.4    | 21.9    |

#### No of Vehicles sold in India in Millions

- Cars no more than 14% of total vehicles
  - About 15% of this (less than 2% of total) costs more than 210M (\$15,000)
  - World-efforts focused only on this

| Percentage of Cars sold in India |         |         |         |  |
|----------------------------------|---------|---------|---------|--|
| Price Range                      | 2015-16 | 2016-17 | 2017-18 |  |
| Below 2500,000                   | 2.82    | 28.85   | 27.43   |  |
| <b>I</b> 500K to 1 million       | 55.49   | 54.96   | 56.48   |  |
| <b>1 to 1.5 million</b>          | 15.29   | 15.23   | 14.65   |  |
| Above 21.5 million               | 1.20    | 0.96    | 1.43    |  |

- Three wheelers have become the main last-mile public transport for 75% Indians
  - Urban as well as Rural (village to town)
  - Rickshaws not included in above table

# EV Policy: India's focus on its 98% vehicles

• India's autos different from that in most of the world: small and affordable vehicles

- Domination of 2-wheelers: 79%
- Autos including small goods vehicle: 4% (rickshaw not included)
- Buses and large goods vehicle (including trucks): 3%
- Economy Cars costing below 21 million: 12%
- Premium Cars costing above 21 million: 2%
- 98% of public and affordable vehicles: not the focus of the rest of the world; India would attempt to get leadership here
- 2% vehicles (premium four-wheelers): similar to that in rest of world; India would learn and adopt; encourage multinationals to manufacture them in India
  - Will help us build a stronger ecosystem for components and subsystems

98%

# An Alternate Approach for Public Transport

- Focus on higher efficiency: Wh/km (equivalent to kms/litre of petrol)
  - Lower Wh/km brings down battery size, weight and cost
  - For e-autos in last six months: from 70 to 80 Wh/km to 45/50 Wh/km
  - E-buses: from 1600 Wh/km to 900 Wh/km
- Split battery into smaller size (one third) and swap
  - No waiting time to charge battery: no public infrastructure required
- Battery-life severely affected by Fast Charging at 45 deg C
  - Swapped battery can be charged in conditioned environment and in two hours to maximise its life

35-40%

reduction

swap

swap

swap

Battery size

without range anxiety

### Approach towards Business Viability

- Separate vehicle business (without battery) & energy business (battery)
  - Capital cost similar to that for petrol / diesel vehicle
  - Operation cost today same as petrol / diesel vehicle
    - WITH no SUBSIDY; but lower GST for strictly three years
- Drive Volumes using public vehicles
  - Get companies to buy vehicles in bulk (100,000 plus) and lease
  - Get companies to buy batteries in bulk and set up energy business
  - Private vehicles to leverage the eco-system
  - No subsidy needed as with these 5 steps, capital cost of vehicle similar to that for petrol vehicles, and 2/km operation costs same as petrol / diesel / CNG

#### Private Vehicles: EV Batteries, costs and range-anxiety

- Batteries dominate the cost of an EV
  - Larger battery increase costs (Tesla uses battery for 540 kms)
    - and also vehicle weight (reducing the energy efficiency or kms/kWh)
  - Smaller battery creates range anxiety
    - Use Public Fast Charger: waiting time + public charging infrastructure
    - Fast Charger with 1C charge: takes about an hour to charge the battery
    - 4C Fast Charger -- 15 to 20 minutes: but reduces battery life for low-cost Graphite-NMC batteries (gets worse as temperature crosses 40°C)
    - Alternatively LTO batteries: Charge Fast even at high temp: but three times costlier

#### Range-extender Batteries for 4W and 2W

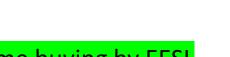
- Suppose EVs have a small low-cost battery with limited range builtin (example 100 km range for e-car or 50 km for e-scooter)
  - Enough to drive within cities for 90% of days
  - Use only night-time Slow Charging: maximising battery life
  - Affordable
- When one needs to drive longer distances (10% of days)
  - use a **RANGE EXTENDER battery to** overcome range anxiety
    - Swap-in a second (swappable) battery doubling the range at a petrol pump (3 to 5 minutes), enabling another 100 kms range for a e-car
    - Swap the swappable battery again for still longer range (300 kms or 400 kms)
  - Swapping by Energy Operators

# Summing up: India's Tasks

- 1. Most Energy Efficient Vehicles: low Wh/km will reduce the size of the battery
  - Better motor and drive (power-train), better tyres, lower weight and better aerodynamics
- Battery ecosystem: Pack manufacturing (30%), cell-making (30%), materials and chemicals (40%)
- Charging and swapping Infrastructure for range-extension – Slow-charging, fast charging and battery swapping
- 4. Demand Generation and Policies

# Task I: Vehicles and Demand generation

- E-rickshaw & e-auto: just started to deployed with battery swapping will scale
- E-cargo auto: to be developed over next six months with battery swapping
- 2-wheelers with **RE battery swap**: will launch next month
- 4-wheelers: 100 km range being deployed with fast chargers volume buying by EESL
  - 4-wheeelers with **RE battery swap**: to be ready in six months
- 9m / 12 m city buses
  - being deployed with fast charger (requires 1 hour charging every 100 kms)
  - With battery swapping at end of each trip: to be deployed in four months

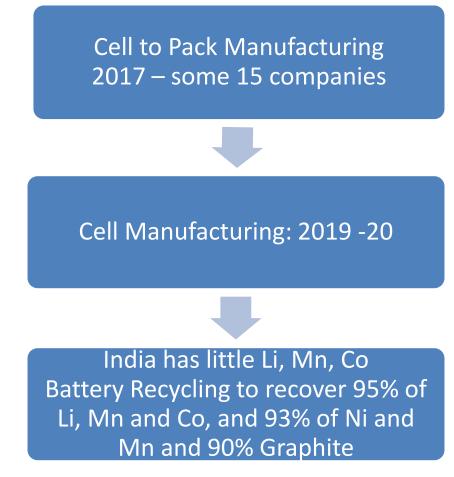

Most City buses travel 30 km /trip

- Typical 8 trips per day
  - Swap at each trip

12

Driven by Industry and Start-ups

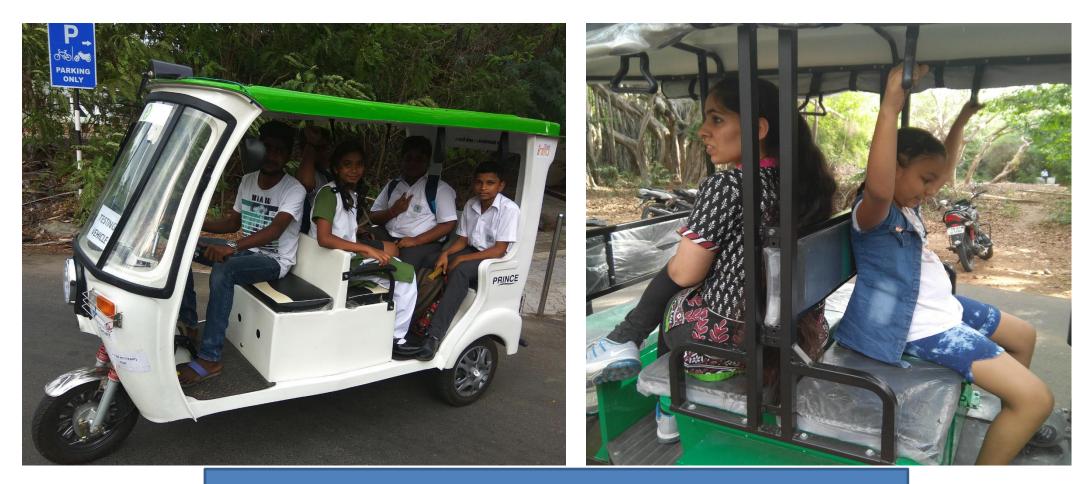





#### Task II: Charging & swapping Infrastructure

- Develop Low-cost Swapping infrastructure -- Ready to launch and scale
- Chargers at affordable costs
  - Overnight AC chargers: standards defined; product ready and affordable
  - DC Fast chargers under 15 kW (DC-001): standards defined; product ready and affordable -- costs about 1.25 lakhs in volumes
  - Fast Chargers with higher powers for larger cars and buses: standards being defined; product to be developed and made affordable over next one year
- Creating charger service industry: to be done this year
- Creating charging and swapping industry (energy operators): done
- Develop communication protocols to get highest performance: good progress

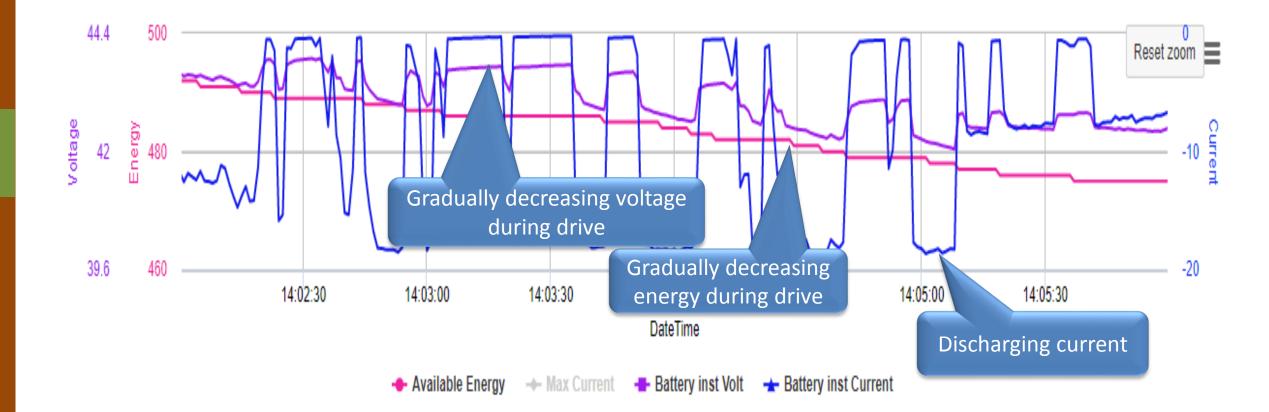
#### Tasks III: Batteries


- Battery pack development: thermal design, mechanical design and Battery Management System to get the best out of low-cost cell: largely ready
  - established and start-ups [30% value add]
- Battery Cell Development
  - JV with external tie-ups [30% value add]
- Battery Material Development: great progress with battery recycling (urban mining) [40% value add]
  - scaling on way

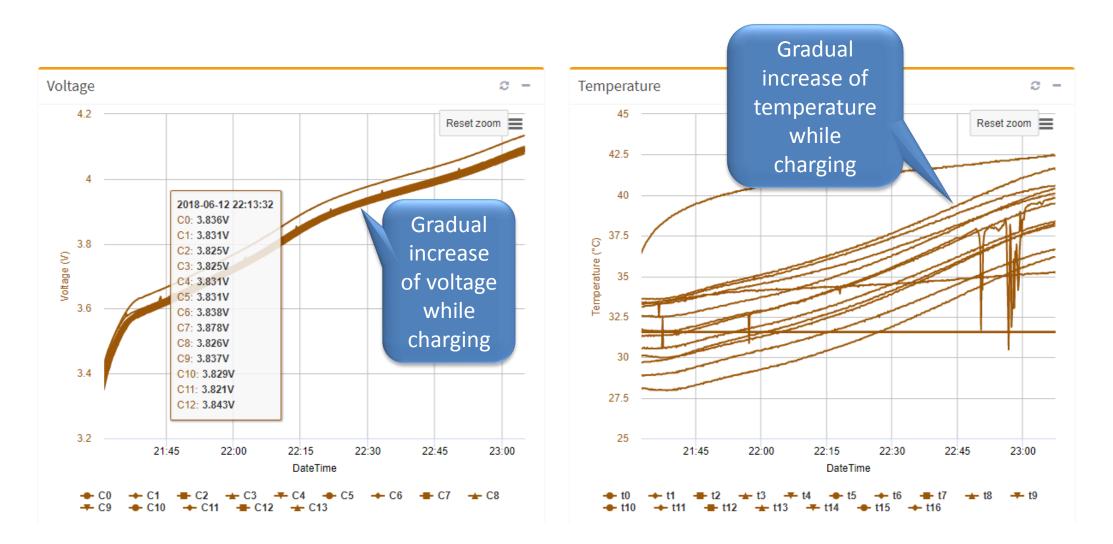


#### Task II: Industry

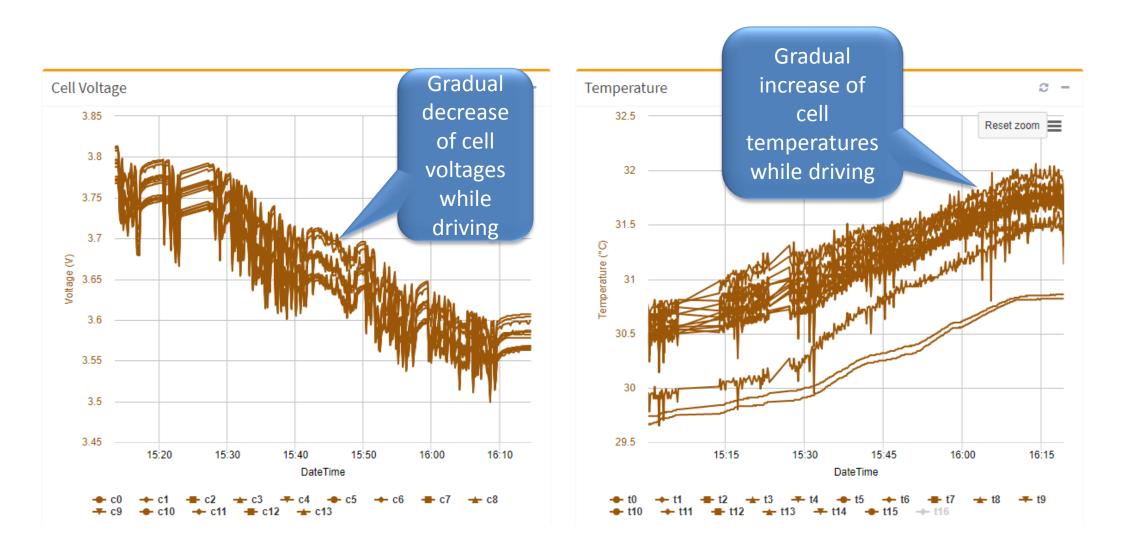
- Waking up auto industry: done
- Waking up large auto-companies: done
- Waking up large battery industries: done
- Transforming small and medium sub-system and auto-component industries: not begun
- Developing new Electrical (power-electronics) industries: more needed in developing high-efficiency motors and controllers -- to be done over next two years


#### Vehicles on Drive Pilot of LS Battery swapping at IITM Campus




Test vehicle with school kids, residents and staff in IITM campus

EV India Summit 2018


#### Battery pack energy, voltage and current during driving



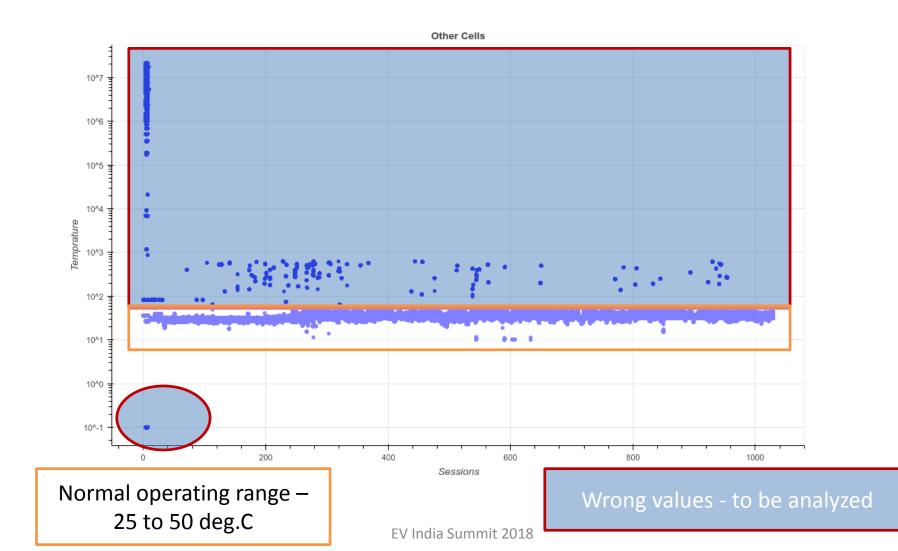
#### Individual Cell Voltage and Temperature while charging



#### Cell voltage and temperature monitoring during driving



#### **Performance Comparison**


| S.No | Make and Model  | Wh/Km | Distance<br>travelled<br>(Kms) |
|------|-----------------|-------|--------------------------------|
| 1    | Make 1, Model A | 44    | 36                             |
| 3    | Make 1, Model C | 38    | 27                             |
| 4    | Make 2, Model A | 42    | 43                             |
| 5    | Make 2, Model B | 37    | 51                             |
| 6    | Make 3          | 39    | 46                             |
| 7    | Make 4          | 58    | 31                             |
| 8    | Make 5          | 41    | 46                             |

Sample Dated: 14<sup>th</sup> June, 2018

|      | Vehicle  | Tatal Didaa |            |
|------|----------|-------------|------------|
| S.No | Make     | lotal Rides | Avg. Wh/Km |
|      |          | 1.54        | 40.20      |
| 1    | Make 1/C | 164         | 40.36      |
| 2    | Make 2   | 331         | 44.15      |
| 3    | Make 3   | 324         | 44.28      |
| 4    | Make 4   | 419         | 46.29      |
| 5    | Make 5   | 82          | 52.18      |
|      | All      | 1320        | 45.45      |

Cumulative of 4 Months

### Charging – All Cell temperatures for all sessions (~ 6 Million data points)



- Develop Comprehensive long-term and stable policy for EVs
  - Including policy to incentivise setting up new technology industry in order to attract investment
- **Develop** strong R&D to commercialisation in EV subsystems
- Encourage electricity production from Renewables
  - Encourage solar-PV modules being manufactured locally
- Watch out for new approaches and technologies
  - like fuel-cells, distributed motors, batteries withstanding higher temperatures, motors without permanent magnets, heavy trucks

# To Conclude

- More needs to be worked out
- Time is of essence
  - Several industries have worked hard over the last few years
    - They need to be encouraged and see a continuous forward movement
  - More focus on Make in India and start-ups
    - With attempts to preserve India's GDP and grow jobs
- Can we do it by 2030: Certainly

For deeper understanding, look at the blog "understanding the EV Elephant": <u>https://electric-vehicles-in-india.blogspot.in/2017/12/</u>