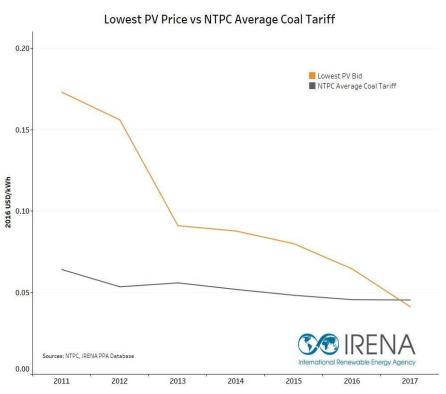
Innovation towards Powering Low-income Rural Homes leveraging ICT

Ashok Jhunjhunwala, IIT Madras (on sabbatical) Principal Advisor, Minister of Power and MNRE

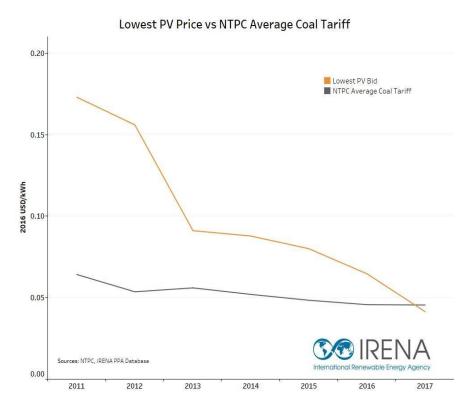
ashok@tenet.res.in

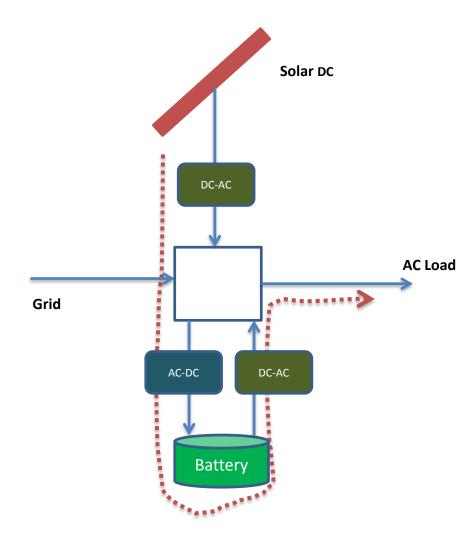
Dismal State of Power in low-income Rural homes


- 50 million Indian homes not connected to electrical grid
- Another 50 million get power for less than 12 hours a day
- Primary reason
 - can not afford power, even at subsidised rates
 - Utilities lose money in supplying to these homes
 - No reason to supply 24 x 7 power
- Requires disruptive Innovation

Three emerging technologies combine

- Disruptive Innovation combines them to solve this vexed problem
 - Falling Solar PV prices (\$0.25 per Wp) result in \$0.04 per kWh
 - Can be used on roof-tops (no T&D losses)
 - But solar would require expensive storage
 - AC to DC and DC to AC converters will amount to 45% losses


Interest rate	10%
solar PV \$ costs per W	0.25
Solar Life (years)	25
Solar \$ per year per W	0.028
BoS \$ costs per W	0.15
BOS Life (years)	10
BOS \$ per year per W	0.024
Total \$ cost per kW	51.954
solar insolance (hours per yr)	1500
losses	10%
\$ Cost per kWh	0.038



Three emerging technologies combine

- Disruptive Innovation combines them to solve the vexed problem
 - Falling Solar PV prices (\$0.25 per Wp) result in \$0.04 per kWh
 - Can be used on roof-tops (no T&D losses)
 - But solar would require expensive storage
 - AC to DC and DC to AC converters will amount to 45% losses
 - Need Solar-DC will avoid losses
 - But storage will push costs to \$0.09 per unit
 - Too high for such customers
 - IoT will help bring in affordability

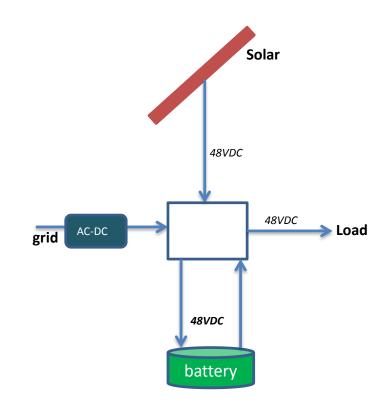
Decentralised Solar Power at Homes

- Solar PV gives DC Power
 - But load is AC
 - Needs a DC-AC converter
- Now if we add a battery
 - Battery stores only DC
 - Require an AC-DC converter for charging
 - Require a DC-AC converter during discharging
- For *low power (say 100W)*, each converter can have 10 to 15% loss
 - Solar with battery may have up to 45% loss
 + battery loss

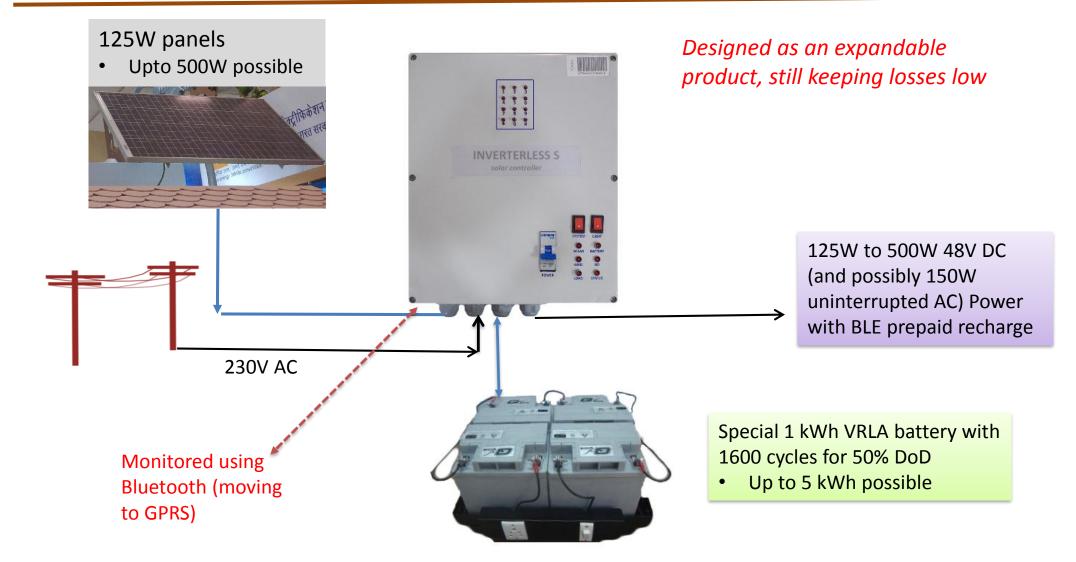
And it gets Worse

• As one realises that home-loads have been slowly moving towards DC

Fans	AC fan	BLDC fan		
At full Speed	72W	30W		
At speed 1	60W	9W		
Lighting	CFL Tube light	LED tube		
At Max. Intensity	36W	15W		
At Lowest Intensity	NA	4W		



LED tube life much longer (DC powering enhances reliability)


- All Electronics devices work on low-voltage DC
 - TV (LED/LCD), laptops. Cell-phones, speaker-phones, tablets, speakers
 - AC to DC conversion has losses from 20% to 50% in each device
- Even the refrigerators, air-conditioners, washing machines are now using BLDC or SR motors
- DC-powered DC-appliances are energy-efficient
 - Consumption down by 50%

Are we ready to take a leap and move to Solar-DC

- DC Micro-grid connecting
 - Solar Panel
 - Battery
 - DC Appliances
- Highly efficient usage of Power
 - Low-power from grid alone converted from AC-DC
- 48V DC chosen due to
 - Safety considerations
 - Lower cable losses compared to 12V/24V DC systems
- But design non-trivial
 - Solar MPPT voltage varies
 - Battery needs independent charge voltage
 - Load is at some fixed voltage
 - DC-DC converters will add similar losses

IITM designed Solar-DC Inverterless

And worked with start-ups to build Appliances

LED Bulb

5W instead of 30W bulb

Cell phone Charger/Socket

• DC charger with USB port

BLDC Fan

- 30W instead of 72W AC fan
- 9W at lowest speed

LED Tube light

 15W - dimmable to 4W, instead of 36W fluorescent tube

Remote Control for Fan & Tube light

• ON/OFF and for dimming

Cost: **20000** *for* 125W SP + 1 kWh Battery+ appliances

Energy-efficient DC appliances being expanded

DC Desert Cooler

- Consumes 120W instead of 180W
 - AC cooler

DC Mixers

 Consumes 150W, whereas AC Mixers consume 350W

DC-powered Colour TV

 Consumes 30W along with set-top box Butter-churner and atta-chakki, sewing machines, roti-machines

• getting ready

Refrigerator, charkha and Stove

• Still experimental

Deployment in 15000 homes

- Electrified 4000 off-grid homes in Jodhpur and Jaisalmer districts of Rajasthan
 - Tough terrain, no road connectivity, sandstorms, lack of local resources
- 7500 homes in Assam being taken up in hills
 - 12000 more homes being take up
- Grid-connected installations in states of Orissa, Karnataka, Tamil Nadu, Telangana, Andhra
 - Where power cuts > 8 hours /day

Changing lives in deserts

Villagers thrilled

 "Apne Vidyarthiyon ko ghar ka kaam dene laga hu. Khush hu ki is baar garmiyon mein bhi bachhe mann laga kar padhai karenge." [now l give my students home-work. Happy that even in summer they will now be able to study]

- Masterji

 "Sab ko utshah se apne ghar ka Solar system dikhata hu ji, hamare ghar mein bhi pankha, light aur remote hai" [show my solar system to everyone at home. Have fan, light and remote]

- Dunga Ram

• feedback: https://youtu.be/NF6EgdRsBXk

Small AC / DC Home Power Costs

Device	Numbers deployed	Operation hrs/ day			Cost / day includes depreciation and interest for solar panel and battery			
Tubelights	2	6	assuming grid costs of 25 per ur				15 per uni [.]	
Fans	2	12						
Bulbs	2	10		лс н	ome	DC Home		
Phones	1	4		AC Home		DC Home		
TV	1	10	E	nergy/	Cost per	Energy /	Cost per	
			d	ay kWh	day 🛛	day kWh	day 🛛	
AC Grid + 0 LS		3.27	16.3	1.29	6.45			
AC +Battery + Solar + 4h LS		3.75	28.9	1.35	7.3			
off-g	off-grid + Battery + Solar		4.9	50.6	1.33	▶ 12.6		

Off-grid home power-costs with solar-DC (212.6 per day) less than the cost of on-grid AC homes with no power-cuts (216.3 per day)

Per unit costs of electricity and affordability

- Solar through battery \$0.16 per unit (25% time day time)
- Grid costs: \$0.08 per unit (50% of time evenings and nights)
- Solar-DC costs \$0.04 (25% of time when sun and grid not available)
- Total is \$0.09 per unit
 - Load reduced to 60% by using DC-powered DC appliances
 - But cooking needs to move from bio-mass (severely impacts health) to electricity doubling electricity usage
- Not affordable to bottom one third of homes
 - Would need \$0.05 per unit...

ICT now steps in

- As nations go more and more with renewables
 - and as power output from renewables need storage, and storage is expensive
- Possible to use distributed storage at homes for grid balance
 - Feeding power at low cost when grid is surplus
 - Drawing power from home storage when grid is deficit at higher costs
- While grid balances, customer can gain by deploying storage
 - will need communications (Internet of things) between grid and home-storage
 - Wireless communication reaches each rural home today
 - Possible to do this such that cost of power for a home goes below \$0.05 per unit

To Conclude

- Mobiles and Internet have reached most homes, even ones without electricity
- Time has come that ICT enables those who have been left behind in all kinds of ways: health, education, energy, agriculture, rural industry
- Necessary that ICT innovation combines with other Innovations
- Power to a rural low-income home has been a vexed problem for long
 - Falling Roof-top Solar and battery prices give us hope
 - But would need DC power-lines at homes to bring the cost down
 - And storage costs would be brought down by sharing it with rural homes and grid (enabling renewables to grow)
 - ICT will be the key enabler for this