Scaling Electric Vehicles in India

Ashok Jhunjhunwala, IIT Madras (on sabbatical) Principal Advisor, Minister of Power and NRE

ashok@tenet.res.in

Why is Electric Vehicle (EV) the future transport?

Better efficiency with less number of moving parts

Area	Petrol / Diesel	EV
Energy efficiency	17 – 21%	90 – 95%
Moving parts (reliability)	2000+	20+

- In five years, EV capital costs will be less than that of petrol vehicles
 - with acceptable range and operational costs at a fraction of that of petrol vehicles
- But if we wait, India will import most EV sub-systems and batteries instead of oil

Falling battery costs

Year	Li battery costs per kWh
2012	USD 600
2015	USD 450
2017	USD 250
2020	USD 150
2024	< USD 100

But before we begin: Nay-sayers

- But Does India have enough electricity?
- Full conversion of transport to EV will utilise 15% to 20% of total electricity generation
 - No shortage of electricity: thermal plant load factor today is 59.6%
 - Will help power-usage during off-peak hours
 - Alternatively, rooftop solar may provide all required electricity using 0.07% of India's geographical area

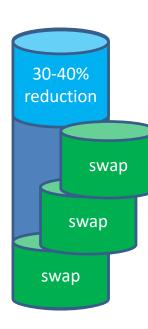
Nay-sayers: Pollution

- But does electricity not cause pollution?
- Zero pollution levels if renewables used
 - Renewable prices have fallen below that of coal-plant: future capacity will mostly come from solar / wind
- If electricity is produced with current thermal plants
 - No tail-pipe emission
 - CO₂ pollution down by 50%

World-over EV is scaling driven by subsidies – some 30 to 40%

EVs: Hamare yahan hota to hai, dikhta nahee hai, dikhna chahiye

Subsidies is possible, but not at scale


How does one get EV to Scale and that too in 2017?

So how do we enable Electric Vehicle today

- World-over EVs happen today with 30 to 40% subsidy
- India does not have enough money for subsidy
 - So how do we do it without subsidy?
 - must make economic sense
- At the same time scale early
 - And take leadership in the world at least in some segments
 - As far as possible, Make in India and develop the complete eco-system from end to end

Approach

- Focus on higher efficiency: Wh/km (equivalent to kms/litre of petrol)
 - Lower Wh/km brings down battery size, weight and cost
 - For e-autos in last six months: from 70 to 80 Wh/km to about 45/50 Wh/km
 - E-buses: from 1600 Wh/km to 900 Wh/km
- Split battery into smaller size (one third) and swap
 - No waiting time to charge battery; no public infrastructure required
- Battery-life severely affected by Fast Charging at 45 deg C: onethird as compared to charging in two hours below 25 deg C
 - Possible with swapping

without range

anxietv

Approach (contd)

- Separate vehicle business (without battery) and energy business (battery)
 - Capital cost similar to that for petrol / diesel vehicle
 - Operation cost today same as petrol / diesel vehicle
 - WITH no SUBSIDY; but zero-rated GST for strictly three years
- Drive Volumes using public vehicles
 - Get companies to buy vehicles in bulk (100,000 plus) and lease
 - Get companies to buy batteries in bulk and set up energy business
 - Private vehicles to leverage the eco-system
 - No subsidy needed as with these 5 steps, capital cost of vehicle similar to that for petrol vehicles, and ₹/km operation costs same as petrol / diesel / CNG
 - Manufacture motors and drives, chargers, batteries, cells and battery-chemicals in India

Three wheelers: e-rickshaw, e-auto

- Current e-rickshaws of poor quality: use Lead-acid batteries
- Use swapping: 50 km range battery
 - swap in 2 minutes at some 200 locations in a city
 - Quality electric vehicles at similar price as petrol/CNG vehicles
 - Charged Li-ion hire price per km less than that petrol/CNG vehicles

August 2017 Scaling of EVs in India

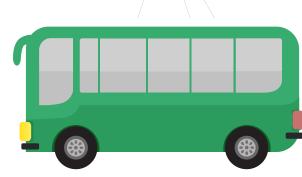
Electric Three-wheelers

3W Operators may use vehicles with larger batteries and charge at home / public chargers. But NO subsidy.

- 50 manufacturers, battery manufacturers, potential battery swappers and vehicle aggregators working towards
 - Common and modular battery pack specs driven with industry
 - 1.5 kWh, 13 kg, 3000 cycles: two packs for 3-wheelers
 - Additional specs for vehicles: efficiency (35 Wh/km for e-rick, 45 Wh/km for e-auto), safety and easy battery-swapping
 - Inter-operability tests + certification
- Launch in November 2017
 - 200K order: can target 1 million 3-wheelers in 18 months

Everything other than battery cells made in India

Large e-auto and ecargo rickshaw and autos to follow


For City-Buses

- Most city-buses travel less than 30 kms per trip
 - Some 8 to 10 trips per day: Ten minutes break between trips

E-Bus Operators may use vehicles with larger batteries. But NO subsidy

- Choose batteries with 50 kms range
 - Swap batteries (using robots) at trip-terminal point
 - Operation costs per km is no more than for diesel vehicle

- High performance (low Wh/km) buses without battery
 - Capital Costs similar to that of today's buses

August 2017 Scaling of EVs in India 1

Electric buses

- Some 30 manufacturers, battery manufacturers, potential battery swappers working towards
 - Definition of Common battery pack specs
 - 50 kWh, 450 kg, 3000 cycles
 - Specs for vehicles: efficiency, safety, easy battery-swapping (with robotics)
 - Inter-operability tests + certification
- Could launch in January 2018: can target 10000 buses in 15 months

4-Wheelers: need Fast Chargers

- Focus on Taxis and Government Vehicles
 - Economics work out as Cost per km comparable to that for petrol vehicles
 - Have a range of 110 kms: going up to 160 kms by July 2018
 - Overnight slow AC charging at homes
 - two hour AC charging while parked at office can extend range to 150 kms
 - DC fast charger for one to one and half hour charging

Public Chargers

- Public chargers for small vehicles standardised
 - Bharat Chargers AC-001 (slow) and DC-001 (fast) [less than 100V, 15 kW]
 - Affordable so that they can make business sense
 - DC chargers may cost ₹1 lakh to ₹1.5 lakhs
 - Make Charger business viable like STD-PCO
- Public fast chargers for larger vehicles to be standardised
 - AC-002 and DC-002 [100V to 800V, 30 to 100 kW]
 - Industry needs to get back with what they need
 - Business case needs to be figured out: current costs ₹10 to 20 lakhs

Get going at Speed

- Build Volumes
 - Prices depend much on volumes
 - Focus on Make in India
 - Everything other than battery cells are manufactured in India
- Will enable personal vehicles to take off
 - Two-wheelers can use the same battery module as used in 3-wheelers
- Other vehicles in future
 - Long-distance buses, Tempos, Trucks,
 Agricultural Equipment and vehicles

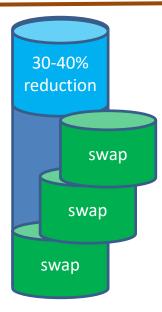
Cell to Pack Manufacturing 2017 – some 15 companies

Cell Manufacturing: 2019 -20

India has little Li, Mn, Co Battery Recycling to recover 95% of Li, Mn and Co

ADDITIONAL SLIDES

Challenges and Approach I: Efficiency


Battery size without range anxiety

- Battery most expensive component of EV
- Focus on higher efficiency: Wh/km (equivalent to kms/litre of petrol) at low vehicle speed
 - Lower Wh/km brings down battery size and cost
 - higher motor efficiency, better tyres, aero-dynamics and light-weight materials: 30 to 40% improvement in many cases
 - For e-autos in last six months: from 70 to 80 Wh/km to under 45 Wh/km
- Still costs are too high

Challenges and Approach II: Swapping

Battery size without range anxiety

- Introduce Swapping
 - Split battery into smaller size (one third) and swap
 - No waiting time to charge battery; no public infrastructure required
 - 50 kms battery for auto: swap in 2 minutes at some 200 locations in a city
- For Fast Charging at 45 deg C, battery life is onethird as compared to charging in two hours below 25 deg C
 - Swapping enables this

Approach III: Energy Business

- Separate vehicle business (without battery) and energy business (battery)
 - Purchase enhanced efficiency vehicles without batteries
 - Capital costs similar to that of equivalent ICE vehicle costs
 - Energy Business: battery ownership (depreciation and interest),
 swapping & charging
 - operation costs (cost per km) no more than that for petrol / diesel / CNG vehicles

Approach IV: Aggregate Demand

- Drive Volumes using Public Vehicles
 - Get companies to buy vehicles in bulk (100,000 plus) and lease
 - Get companies to buy batteries in bulk and set up energy business
 - Private vehicles to leverage the eco-system

 Manufacture motors and drives, chargers, batteries, cells and battery-chemicals in India