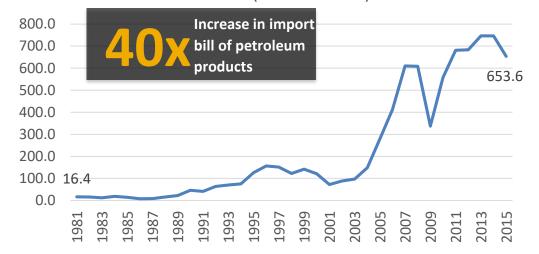
Towards Fossil free India

Ashok Jhunjhunwala C-BEEV, IIT Madras

Towards Fossil-free India in near future

- Coal drives electricity (₹2.50 per kWh): highly polluting and adversely impacts climate
 - Plenty of sunlight / wind (₹2.50 per kWh): Not controllable
 - Would need energy-storage to make it 24x7
- Oil used for vehicular traffic and in diesel-generators
 - We import most oil and have huge impact on our environment
 - Electrically driven vehicles possible today: bottleneck is energystorage

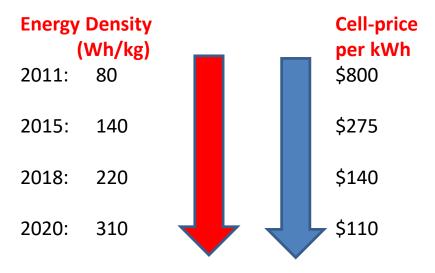

R&D, Start-ups and Industry-academia Collaboration

- To drive India to become leaders in energy Storage
 - And drive EVs and Grid-Storage today

India's Import Bill for Petroleum Products from 1981 – 2015 (in INR Billions)

- EV is four-times as energy efficient as ICE; has 50 times less moving parts
 - ICE efficiency: 22% to 23% Vs EV motor energy efficiency: 90%

Petroleum consumption up from 32.5 mill tons in 1981 to 184.7 mill tons in 2015

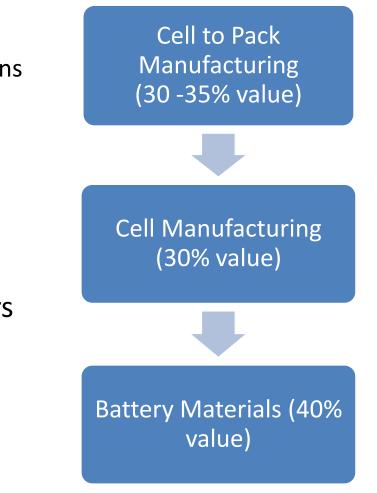

December 2019

Where is the problem to switch to EVs?

- Batteries: energy-storage
 - Energy-density of Li-Ion battery-cells is continuously increasing and is in between 250 to 300 Wh/kg today
 - But much less than that for petrol at 9000 Wh/kg
 - Even taking into account four times higher drive-efficiency
 - Battery weight per km is 8 to 9 times higher than that of petrol-tank per km
 - Same with the size
- And Cost of battery is inversely related to its energy density
 - Higher energy-density: lower use of materials like Lithium, Cobalt, Nickle
 - Higher energy density will have higher safety concerns

Increasing Energy Density → Affordable Batteries

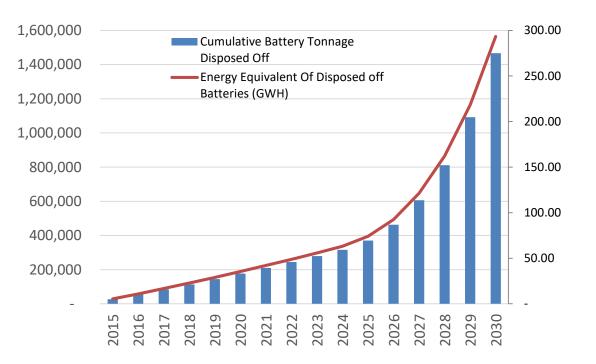
- Energy density increasing rapidly: main driver for cost reduction
 - Li Ion Battery: up to 300 Wh/kg available
 - Towards 400 to 500 Wh/kg in coming years
 - NMC with Graphite-Silica anode
 - LFP is limited to 160 Wh/kg
 - Other variants of Li-battery may emerge to drive energy density higher
 - Higher energy-density: higher safety concerns
- EV with large battery to overcome range anxiety (several hundred kms in a car) is still 1.7 to 2 times that of ICE car



Compute battery pack cost per km, taking into account its lifetime, depreciation and interest

Li Ion Batteries for EV

• Battery-pack development involves


- thermal design as per Indian temperature and driving conditions
 - Low-cost Cooling mechanism to withstand 45°C ambient
- mechanical design to ensure cells do not bulge
- Battery Management Systems to get the best out of each cell
- Safety is a major concern: handled by BMS
- established and start-ups making waves in making BMS
- Cell manufacturing: technology changes every two years
 - Need technology which stays ahead in energy density
 - \$50M per GWh Capital investment: JV with external tie-ups

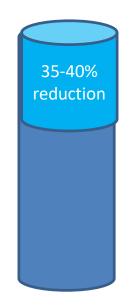
Materials for Batetries

• Li-Ion batteries today use

- Lithium, Cobalt, Manganese, Nickel and Graphite
- India does not have much of the mines for any these
- Import bill could sky-rocket : 25 GWh per year by 2025
- Recycle used batteries (urban mining)
 - 90% of Li and Co, Ni, Mn and Graphite being recovered
 - Need large number of recycling plants with ZERO
 EFFLUENT
- India could import used batteries and become the urban-mining capital of the world for Li-Ion battery-materials

Over 1 Lakh tons of recyclable batteries are currently available in the market

But are EVs affordable today?


• India's auto-segment different from that in most of the world: small and affordable vehicles

95%

- Domination of 2-wheelers: 79%
- Autos including small goods vehicle: 4% (rickshaw not included)
- Economy Cars costing below ₹1 million: 12%
- Premium Cars costing above ₹1 million: 2%
- Buses and large goods vehicle (including trucks): 3%
- 98% of public and affordable vehicles: not the focus of the rest of the world; India would attempt to get leadership here
- 2% vehicles (premium four-wheelers): similar to that in rest of world; India would learn and adopt; encourage multinationals to manufacture them in India
 - Less than 0.5% costs more than ₹1.5 million
 - Will help us build a stronger ecosystem for components and subsystems

Increase Energy-efficiency of EV

- Battery Dominates the cost of EV
- Focus on higher energy-efficiency: Kitna deti hai for EVs (kms/litre of petrol)
 - Lower the energy (Wh/km) used per km, lower is the battery size and its cost to drive certain range
 - size and weight of the battery reduces: in fact enhancing efficiency further
 - Efficiency improved by improving Motor and Controller efficiency, better tyres (lower rolling resistance), better vehicle-aerodynamics and lower weight
- Battery size reduced by 35% to 40% over last two years in India
 - For e-autos: from 70 to 80 Wh/km to 45/50 Wh/km
 - E-buses: from 1600 Wh/km to 900 Wh/km

Battery size without range anxiety

Approach I: Business viability for Public Transport

- To make Public Electric Vehicles more affordable
 - Split battery into smaller size (one third) and swap
 - No waiting time to charge battery: no public infrastructure required
 - Smaller Battery size makes EV highly affordable as compared to petrol vehicles anxiety
 - no further economic challenge or technical challenge
 - Engineering Challenges for battery-swapping need to be overcome
 - Battery-life severely affected by Fast Charging at 45 deg C
 - Swapped battery can be charged in conditioned environment and in two hours to maximise its life

- Capital and operation cost (₹/km) similar to that for petrol / diesel vehicle
 - WITH limited SUBSIDY, electric autos and buses can compete today with ICE vehicles

swap

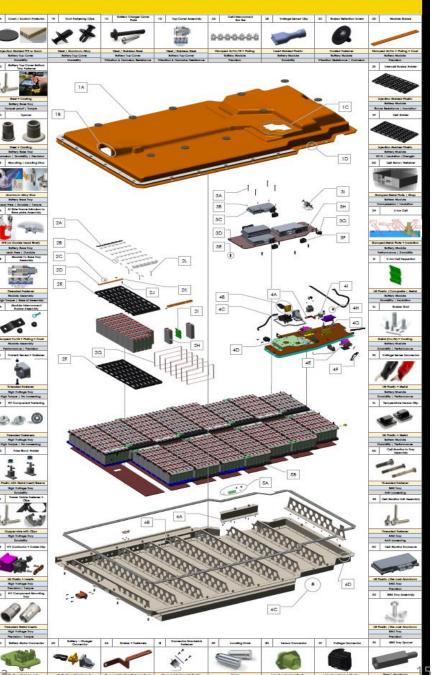
swap

swap

Battery size without range

Approach II: Private Vehicles (4W/2W)

- Batteries dominate the cost of an EV: Tesla uses battery with 540 kms range
 - Increasing the vehicle weight (reducing the energy efficiency or kms/kWh)
 - On the other hand, Smaller battery creates range anxiety
 - Public Fast Charger: waiting time + public charging infrastructure: takes an hour to charge battery
 - Fast Charge in 15 to 20 minutes: needs expensive batteries (life impacted as temperature crosses 40°C)
- Suppose EVs have a small low-cost battery with limited range built-in: Affordable
 - Example: 100/ 50 km range for e-car / e-scooter: Enough within cities for 90% of days
 - Use only night-time Slow Charging: maximising battery life
- When one needs to drive longer distances (10% of days)
 - use a RANGE EXTENDER battery to completely overcome range anxiety
 - Swap-in a second (swappable) battery doubling the range at a petrol pump (3 to 5 minutes)
 - Swap the swappable battery again for still longer range (300 kms or 400 kms)
 - Swapping carried out by Energy Operators


Approach III: Conventional Approach

- Choose right size batteries
 - Slow-charge normally
 - Fast Charge when needed: may impact battery-life
- Needs chargers to be standardised: what standardisation?
 - Connector: plugs and sockets
 - Voltage, current and power (maximum)
 - Communication to vehicle?
 - Communication to charger management: charging operator or utility manager
 - Metering: how does one bill customer
 - protection

EV threatens India's GDP (auto-sector 7.1% + 5% transport fuel processing / distribution) and large number of jobs Will we lose jobs and GDP?

Depends upon whether we design and manufacture sub-systems within India

- Battery-pack manufacturing involves large number of components
 - Large number of ancillary industry
 - Large number of jobs
- Battery-packs need to be designed for India's environment conditions
 - Involves quality thermal design
 - Careful mechanical design
 - BMS to ensure cell life maximised and safe operations under all conditions



Y SYSTEM COMPONENTS

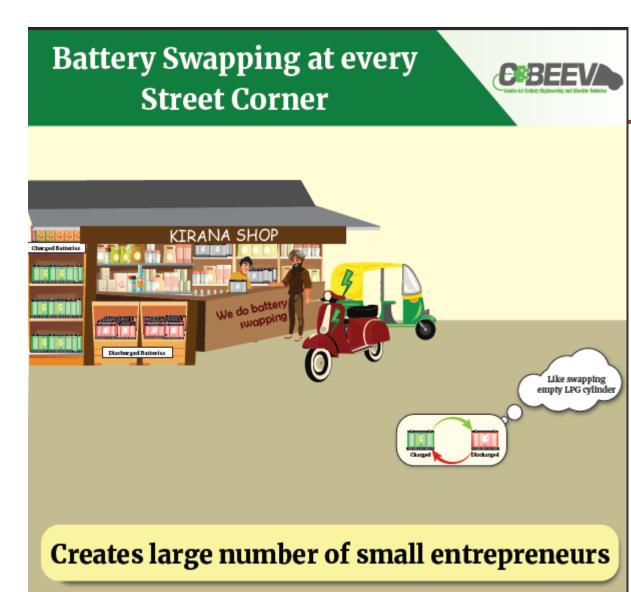
Science for the future - Fossil Free India

Cell-manufacturing: Requires Large plants for

- India needs over 100 GWh of cell manufacturing every year
 - Prismatic, Pouch and Cylindrical
- Battery cell manufacturing like a large process industry
 - High investments
 - Technology changes very rapidly
 - Cost falling rapidly
 - Will require lots of ancillary industries
 - Lots of jobs

Will we have to import all Battery raw materials?

- Not if we recycle all used battery with ZERO effluent
 - Can recover over 90% of Lithium, Manganese, Cobalt, Nickle and Germanium
 - And reuse in new batteries
- Highly manual-intensive work: will create huge number of jobs
 - India could become Urban mining capital of the world
 - Import used battery and recover materials
- Battery Recycling market: \$100M today, over \$1B by 2030
 - 1 lakh ton battery waste available today: 23 GWh of batteries
 - Near Term Driver: Consumer Electronics and laptop battery
 - Long term Driver: Electric Vehicles & Stationary Storage Energy



- Ensure that all spent Li Ion batteries are sent for recycling
 - Manufacture's obligation

Motors and Controllers

- Need motors and controllers for
 - Two-wheelers
 - Three-wheelers
 - Four-wheelers
 - Buses
 - Trucks
- Hundreds of components

- Create a large number of jobs
- Potential for small business

Is it economically viable? What is the cost?

GRID STORAGE to help renewable usage 24 x 7

Renewable Usage

How much is S in India?

- Assuming 70% of renewables is used directly when generated
 - Cost is ₹2.50 per kWh (unit)
- 30% of renewable energy passes through Storage
 - Let S be the cost to store 1 kWh in Storage and retrieving it later
 - Generation cost = (₹2.50 per kWh) + S
 - Average cost per unit
 - 70% x ₹2.50 + 30% x (₹2.50 + S)
 = ₹2.50 + 0.3 * S per kWh

What is the cost of usage per kWh of Grid-Storage

- Depends upon
 - Type of battery
 - Effective number of cycles
 - Capital cost
 - Number of cycles used per day
 - 1 to 3
 - End-to-end Energy efficiency
 - Assume 96%
 - Interest Rates: 2% to 10%

Consider four type of batteries at today's cost

	Cell A	Cell B	Cell C	Cell D
Cost (₹) per kWh	15000	20000	25000	30000
Cycles	3650	7300	10950	14600
Chemistry	NMC	Adv NMC	LTO	LTO

Cost of Storage per kWh

Cost of Storage per kWh

At 10% interest rate Cell B may be best

- 1 cycle per day: costs ₹6:50 per kWh
- 1.5 cycles per day: costs ₹5.25 per kWh
- 2 cycles per day: costs ₹4.50 per unit
- 3 cycles per day: cell B or C or D costs ₹4 per unit

 In West at 2% interest rate, Cells C and D (LTO) make sense

- With 70% renewable energy used directly and 30% through storage
- Cost per unit = ₹2.50 + 0.3*S
 - With S between ₹4 to ₹6.50
 - Cost per unit = ₹3.7 to ₹4.45
- Storage adds ₹1.2 to ₹1.95 per unit
- If renewable is 50% through storage
 - Addition of ₹2 to ₹3.25 per unit
 - Renewables with storage: ₹4.5 to ₹5.75 per unit
- 30% renewables through storage: OK today
 - Storage cost to drop by 50% in 5 to 7 years
 - Renewables through storage can then go to 50%

Decentralised Storage on Grid

- Decentralised roof-top solar used widely today in office-complexes
 - Makes business sense: provide power in day-time
- Can such office-complexes use Storage?
 - Yes, if Time of day metering is introduced
 - In fact, in addition to electric Battery-storage, one may also be able to use chilled-water storage
- First Objective: virtually Eliminate diesel generator
 - If ToD is available, one can considerably gain
 - Storage costs payable within a few years
 - Time has to come to act

To Conclude

- India can take lead towards Fossil-free future
- Transport can converted to EVs
- Electricity generation: move mostly to renewables
 With the help of grid-storage

 R&D, Start-ups and Industry-academia joint development can take us there